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Ⅰ. Introduction

Chest X-ray imaging is crucial in diagnosing

various pulmonary diseases and is a significant

part of global healthcare efforts[1]. Accurate and

efficient analysis of chest X-ray images is essential

for prompt and precise medical diagnosis. Over the

years, researchers have explored various techniques

to improve the accuracy and effectiveness of chest

X-ray image analysis[1]. These techniques include
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ABSTRACT

Medical imaging plays a crucial role in medical diagnosis, with chest X-ray imaging being a widely

employed method for screening and diagnosing pulmonary diseases due to its cost-effectiveness. However,

low-resolution images generated by expensive equipment and suboptimal imaging techniques often lead to a

loss of critical features and acceptable texture. The acquisition of high-quality medical images is paramount for

accurate disease diagnosis. This study introduces an innovative approach for reconstructing super-resolution

medical images using deep learning techniques, explicitly targeting chest X-ray images. The proposed method,

the Pathologically Invariant Remaining Enhanced Channel Attention Block (RECAB), incorporates the

Exponential Linear Unit (ELU) activation function. The primary objective is to accurately recover

high-resolution (HR) chest X-ray images from their low-resolution (LR) counterparts, leveraging a channel

attention mechanism and convolution layer with the ELU activation function―the evaluation of the proposed

method involved two datasets, X-Ray 2017 and X-Ray 2014. A comprehensive comparison was conducted with

several state-of-the-art techniques, including GAN-based super-resolution, deep learning-based super-resolution,

and interpolation-based super-resolution. The quality of the preprocessed images was assessed using the

Structural Similarity Index (SSIM) and the Multi-Scale Structural Similarity Index (MSIM). The results prove

the higher performance of the proposed method, which outperformed the average of 8.6% and 11.6% in SSIM

and MSIM values by 11% and 12.14% on the two datasets, respectively. This research signifies a significant

advancement in enhancing the resolution and quality of chest X-ray images, holding substantial potential for

improving diagnostic accuracy and aiding in medical decision-making.

Key Words : Chest X-ray, Super-Resolution, Remaining Enhanced channel attention block, Exponential Liner

Unit, Structure Similarity Index, Multi Structure Similarity Index.
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deep learning methodologies, skip connections, and

traditional image enhancement techniques. Deep

learning, particularly convolutional neural networks

(CNNs), has emerged as the leading approach in

medical imaging analysis, drastically transforming

chest X-ray diagnostics[2]. CNNs are particularly

well-suited for this task, as they can autono-

mously learn features from raw pixel data and

improve diagnostic capabilities[3-5]. Furthermore,

prevalent architectures such as skip connections are

instrumental in preserving high-resolution features

throughout the encoding and decoding processes,

leading to significant improvements in segmentation

and reconstruction tasks[6].

In addition to CNN architectures, traditional

image enhancement methods have been investigated

to improve the interpretability and quality of chest

X-ray images. Other state-of-the- art

super-resolution approaches, such as SRGAN[7],

SNSRGAN[8], RDN[9], and FSRCNN[10], VDSR[21],

have also contributed significantly to this domain.

Our proposed method promised the following

steps. Firstly, integrating the Residual Group (RG)

and Remaining Channel Attention Blocks (RECAB)

within the model is pivotal in enhancing image

resolution. This enhancement aids in better dia-

gnosis by providing finer details for accurate

medical assessments[11]. Secondly, incorporating the

Exponential Linear Unit (ELU) activation function

within RECAB is instrumental in preserving subtle

information, particularly in the darker regions of

grayscale images. This prevents the loss of vital

information during activation, ensuring that critical

features are retained, which is particularly

beneficial for

X-ray image analysis[12]. Thirdly, our model

demonstrates efficient resource utilization, striking

an optimal balance between model complexity and

performance. This optimization allows for practical

deployment in resource-constrained environments,

broadening its potential applications. Lastly, lever-

aging Remaining Channel Attention Networks

(RECAN) advancements, our model achieves

state-of-the-art super-resolution results, positioning

it as a highly competitive contender in the image

enhancement domain. These advantages colle-

ctively underscore the potential and effectiveness

of our proposed model in advancing medical

image analysis and diagnosis.

In the subsequent sections, we will compre-

hensively describe our proposed model, outline the

architecture in detail, and explain our experimental

methodology and the evaluation results, including

comparative analyses with other relevant models in

the domain.

Ⅱ. Related work

Recently, deep learning based approaches to

computer vision have dramatically outperformed

traditional approaches. This section overviews

various super-resolution methods, categorized into

three main approaches: Interpolation-based super-

resolution, GAN-based super-resolution, and deep

learning-based super-resolution.

2.1 Interpolation Based Super Resolution
Interpolation-based super-resolution techniques

wield predefined mathematical models to bolster

image resolution in image enhancement. Parti-

cularly, nearest neighbor and bicubic interpolation

are foundational interpolation approaches critical

for upscaling low-resolution images.

The nearest neighbor method operates by

straightforwardly duplicating the value of the

nearest pixel, making it computationally efficient

but often at the cost of introducing blocky arti-

facts and struggling to encapsulate intricate image

features[19].

Conversely, bicubic interpolation takes a

nuanced route, employing weighted averaging of

neighboring pixels, resulting in smoother outcomes

than its nearest neighbor counterpart. It risks

over-smoothing fine details despite mitigating

blackness, potentially overlooking vital image

features[20].

2.2 GAN-Based Super Resolution
The advent of Generative Adversarial Networks

(GANs) has revolutionized super-resolution, levera-
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ging adversarial training to generate high-

resolution images from their lower-resolution coun-

terparts. Often, spectral normalization is

incorporated to stabilize the training process and

foster improved convergence[7].

SRGAN (Super-Resolution GAN)[7] is a pioneer

in this realm, a groundbreaking work that

significantly propelled GAN-based super-resolution.

SRGAN adopts a GAN architecture enriched with

a perceptual loss function, advocating for

preserving high-level features. However, they

present a challenge in training and stabilization,

frequently manifesting issues like mode collapse

and noticeable artifacts, ultimately influencing the

overall quality of the resultant image[7].

The SNSRGAN architecture utilizes a perce-

ptual loss function to generate high-resolution

images from low-resolution inputs. The incor-

poration of spectral normalization helps stabilize

the training process, enhancing convergence[8]. This

network has been trained with a scaling factor of

x4 and includes six residual blocks. These blocks

span from the first residual block to the output,

contributing to the discriminator's capabilities. The

discriminator block is crucial for discriminating

high resolution in super-resolution tasks, leading to

improved accuracy. Each residual block comprises

a convolutional layer, batch normalization (BN)[8],

parametric rectified linear unit (PReLu) activation,

and pixel shuffling for Up Sampling. In parallel,

the discriminator blocks include spectrally

normalized convolutional layers, batch

normalizations, leaky ReLu activations, and fully

connected layers. The total number of layers in

this network depends on the number of Up

Sampling layers, which total 128, encompassing all

architecture components. Despite the advantages of

the SNSRGAN architecture in generating

high-resolution images, there are certain limitations

to consider. One notable disadvantage lies in the

complexity of the model, particularly with the

inclusion of 128 layers. This extensive layer count

may increase computational demands during

training and inference, potentially making the

network less practical for deployment on

resource-constrained devices. Additionally, the

intricate structure of the network could result in

longer training times, limiting its efficiency for

real-time applications. As such, careful

consideration of computational resources and time

constraints is necessary when employing the

SNSRGAN architecture.

2.3 Deep Learning-based Super Resolution
The Fast Super-Resolution Convolutional Neural

Network (FSRCNN)[10] is focused on compu-

tational efficiency, utilizing a lightweight

architecture with a blend of convolutional and

deconvolution layers. While FSRCNN achieves

speed improvements, it may exhibit limitations in

handling extremely large scale factors. The

Efficient Sub-Pixel Convolutional Neural Network

(ESPCN)[22] is designed to efficiently upscale

low-resolution images using sub-pixel convolu-

tional layers. ESPCN excels in real-time

applications due to its computational efficiency, but

it might face difficulties with extremely

challenging super-resolution tasks. Each model

presents distinct advantages and disadvantages, and

the choice among them depends on the specific

requirements of the task. The Very Deep

Super-Resolution Network (VDSR)[21] is

characterized by its profound architecture with skip

connection for image super-resolution tasks.

Despite its depth contributing to enhanced feature

learning, very deep networks like VDSR may

encounter challenges such as vanishing gradients

and exploding gradients during training. The

Residual Channel Attention Network (RCAN)[23],

specialized for image super-resolution, utilizes

residual blocks with channel attention.

While demonstrating remarkable image

enhancement, its reliance on ReLu activations can

increase computational complexity, potentially

affecting real-time efficiency and resource-

constrained environments.

The Residual Dense Network (RDN) uses

residual network. Also, this network is tailored for

image super-resolution and employs a combination

of residual learning and dense connections between
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layers, which include global feature learning and

local feature learning. This design facilitates

efficient feature reuse across the network,

enhancing its overall performance. However, the

dense connections introduce increased model

complexity, potentially leading to higher

computational costs. Lastly, leveraging Remaining

Channel Attention Networks (RCAN)

advancements, our model achieves state-of-the-art

super-resolution results, positioning it as a highly

competitive contender in the image enhancement

domain. These advantages collectively underscore

the potential and effectiveness of our proposed

model in advancing medical image analysis and

diagnosis spacing.

Ⅲ. Method

In this section, we present the general

methodology for our proposed network. This

section encompasses The Remaining Enhanced

Channel Attention Network (RECAN), explained as

section 3.1, in Residual Groups (RG), explained as

section 3.2, and Remaining Channel Attention

Blocks (RECAB), explained as section 3.3.

3.1 Remaining Enhanced Channel Attention 
Network

In this section, we elucidate the RECAN

architecture, which is structured around three key

steps: the convolution group, residual group, and

Up Sampling group. The initial phase involves the

input image undergoing two sequential passes

through a 3x3 convolution layer, enhancing its

feature representation. Following this, the processed

data advances to the first Residual Group (RG), in

our model, there are four such groups. Each RG

comprises four remaining channel attention blocks

(RECAB) with convolution layers connected for

each block layer. It is interconnected with a short

skip connection originating from the second

convolution layer. This design ensures the

preservation and integration of crucial information.

The information then progresses to the sub-

sequent 3x3 convolution layer, undergoing further

feature extraction. This layer incorporates a long

skip connection, facilitating data flow from the

initial convolution layer. This strategic connection

enhances the model's ability to capture local and

global features.

Finally, the output is subjected to an Up

Sampling layer, followed by a 1x1 convolution.

This step contributes to refining and reconstructing

the spatial details of the image. Combining skip

Fig. 1. (a) The main architecture of proposed Remaining enhanced channel attention network (RECAN), (b) figure illustrate
residual group RG architecture, (c) figure illustrate remaining channel attention network architecture (RECAB)
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connections, Remaining Channel Attention Blocks,

and the Up Sampling layer collectively augments

the RECAN architecture's effectiveness in feature

extraction, information retention, and image

reconstruction. The main architecture of the

network is illustrated in Figure 1.

3.2 Residual Group
In this section, we elucidate the architectural

design of the Residual Group. The entire network

comprises four residual groups, each consisting of

a convolutional layer and four additional residual

groups. Notably, we have implemented dense

feature fusion (DFF) within each Residual Group

to optimize the utilization of features. Specifically,

elements extracted from Remaining Channel

Attention Blocks (RECABs) are concatenated with

the input and fused through a 3x3 convolutional

layer.

3.3 Remaining Channel Attention Block
This section details the critical component, the

Remaining Channel Attention Block (RECAB). As

well as we discuss the Residual Group (RG), an

essential element in our research, including the

integration of Remaining Channel Attention Blocks

with the ELU activation function. The Remaining

Channel Attention Block holds a fundamental

position within the residual group of the

Remaining Enhanced Attention Network (RECAN),

initiating the journey of input information.

The RECAB input undergoes a convolutional

layer, followed by an ELU activation function.

This crucial step crops a non-zero output for

negative inputs, proving especially advantageous

for grayscale images. Subsequently, the output

experiences another convolution using a 3x3 filter

and ELU activation again. This property of ELU

aids in preserving subtle details, particularly in the

darker regions of the image, preventing the loss of

valuable information during activation. The crux of

this block lies in incorporating a channel attention

mechanism, significantly enhancing the network's

capability to focus on pivotal features. The channel

attention mechanism enhances feature representation

by selectively emphasizing informative channels,

thereby improving convolutional neural networks'

discriminative power and performance. Following

the channel attention, another convolutional layer

(3x3 filter) follows, accompanied by a skip

connection originating from the first convolutional

layer, a vital conduit for upholding and

propagating essential information. The output from

this block then progresses to the subsequent block

for further processing and feature extraction.

In this way, four Remaining Channel Attention

Block RCAB form 1 Residual Group. The intricate

design of the Remaining Channel Attention Block

is visually represented in Algorithm 1 and Figure

1 (c), encapsulating its core architecture.

Ⅳ. Experiments

4.1 Dataset
This study uses two distinct chest X-ray

datasets: Chest X-ray 2017[14] and X-ray 2017 in

this paper. The Chest X-ray 2014[15] X-Ray 2014

in this paper, X-Ray 2017 dataset comprises 5856

normal chest images from the American National

Library of Medicine NIH. This dataset is divided

into separate training and testing sets. The training

set comprises 1194 normal images, while the test

set comprises 120. The dataset explains the table

shown in Table 1.

On the other hand, Chest X-ray 14[15], called

X-Ray 2014 in this paper, comprises 112,120

frontal-view chest X-ray images acquired from

30,805 unique patients. Each image has dimensions

of 1024 × 1024 pixels with 8-bit grayscale values.

Moreover, this dataset includes annotations of 880

bounding boxes for eight pathologies performed by

board-certified radiologists. We designated the 118

annotated images as the testing set for our

analysis, while we randomly selected 1194 images

HR scale LR
X-Ray 2014

[14]
X-Ray 2017

[15]

1024x1024 x4 256x256
Train Test Train Test

1300 120 1194 118

Table 1. The explanation of the dataset
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for the training set.

4.2 Training Settings
In this research, we harnessed a potent hardware

setup, leveraging an Intel(R) Core (TM) i7-11700K

processor with an impressive 16 CPUs and a

substantial 32GB RAM. Furthermore, we

capitalized on the robust capabilities of an NVidia

Titan XP boasting 16GB RAM for our training

endeavors. To transform high-resolution (HR)

images into low-resolution (LR) counterparts, we

embraced a bicubic kernel-based down-sampling

technique, employing a down-sampling factor of r

= 2^k (where k∈). This approach aligns with the

established methodology delineated in

SNSRGAN[8]. The training process of our model

was meticulously optimized using the ADAM

optimizer[16], fine-tuned with parameters b1 = 0.9,

b2 = 0.999, and e = 10^-8. Initially, we set the

learning rate to 2 × 10^-4, implementing an

exponential reduction of 0.1 every 120 epochs to

enhance convergence. Our CNN training involved

the utilization of different loss functions,

encompassing L2 (sum of squared differences) and

L1 (sum of absolute differences)[4]. In their image

quality assessments employing metrics like

MSIM[17] and SSIM[18], the L1 loss consistently

showcased superior performance compared to the

L2 loss. Building on this insight, we oriented our

study to minimize the L1 distance between the

original chest X-Ray images' input and their

corresponding ground-truth images. The entire

training process was orchestrated on the Tensor

Flow platform.

To assess the efficacy of our proposed

methodology, we conducted a comprehensive

comparative analysis with a spectrum of

state-of-the-art approaches, including Nearest-

neighbor (NN)[19], Bicubic Interpolation[20],

VDSR[21], ESPCN[22], FSRCNN[10], RDN[9],

SRGAN[7], and SNSRGAN[8]. These methodologies

were strategically categorized into two groups:

interpolation-based methods (NN, Bicubic

Interpolation), GAN-based methods (SRGAN,

SNSRGAN), and deep-learning-based methods

(ESPCN, FSRCNN, VDSR, RDN, and our

proposed RECAN).

4.3 Equations
We assessed the enhanced images' quality using

The Structural Similarity Index (SSIM) and the

Multi-Scale Structural Similarity Index (MSIM).

The SSIM index is a well-established measure

of image quality assessing the structural similarity

between two images[18]. The SSIM index produces

a value between -1 and 1, where 1 indicates

perfect similarity. As well as SSIM index is

calculated based on three components:

∙Luminance (l): It measures the perceived

brightness of the images.

∙Contrast (c): It reflects the difference in

intensity between an image and its

surroundings.

∙Structure (s): It considers the patterns or

textures in the images.

The overall SSIM index is computed as a

combination of these three components, and the

equation (1).

(1)

where, a, b, and g are constants used to adjust

the importance of each component.

MSIM[17] is an extension of SSIM that considers

different scales or levels of details in images.

Using a Gaussian pyramid, it breaks down the

images into multiple scales and computes SSIM

for each scale. The final MSIM score is a

combination of SSIM scores across all scales.

MSIM equation is explained as equation (2).

(2)

where N is depicting of total number of scales.
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Ⅴ. Results and Ablation Study

5.1 Results
In this section, we present the experimental

results of our research on grayscale chest X-ray

images. We utilized two datasets: The Chest X-ray

2014 and the Chest X-ray 2017. We applied three

super-resolution methods: Interpolation-based

super-resolution, GAN-based super-resolution, and

deep learning-based super-resolution.

For interpolation-based super-resolution using

nearest neighbor (NN), we achieved SSIM values

of 0.701 and 0.637 on X-Ray 2014 and X-Ray

2017, respectively. Moreover, the MSIM values

were 0.713 and 0.668 for X-Ray 2014 and X-Ray

2017 datasets. Bicubic interpolation shaped SSIM

scores of 0.687 and 0.615 on each X-Ray 2014

and X-Ray 2017 image. When trained on the

ESPCN, SSIM values were 0.795 and 0.756 for

each dataset, and the MSIM scores were 0.815

and 0.804 for X-Ray 2014 and X-Ray 2017,

respectively. For FSRCNN, we obtained SSIM

values of 0.921 and 0.913, in MSIM 0.962 and

0.968, on X-Ray 2014 and X-Ray 2017,

respectively.

Using the SRGAN method, SSIM values of

0.856 and 0.809 were achieved for X-Ray 2014

and X-Ray 2017, respectively. The MSIM scores

were 0.897 and 0.923 for each dataset. In the

SNSRGAN method, SSIM values of 0.927 and

0.911 were for X-Ray 2014 and X-Ray 2017,

respectively. The corresponding MSIM values were

0.988 and 0.983.

For VDSR, SSIM scores were 0.823 and 0.821,

while MSIM scores were 0.92 and 0.923 for each

X-Ray 2014 and X-Ray 2017 image. In the RDN

method, SSIM scores were 0.927 and 0.931 for

X-Ray 2014 and X-Ray 2017, respectively. The

MSIM values were 0.976 and 0.982 for each

X-Ray 2014 and X-Ray 2017 image.

In our proposed method, RECAN, we achieved

impressive SSIM values of 0.938 and 0.939 for

the X-Ray 2014 and X-Ray 2017 datasets,

respectively. Moreover, the MSIM values were

0.99 and 0.989 for each dataset.

In summary, our proposed method, RECAN,

demonstrated superior performance to other deep

learning-based and GAN-based super-resolution

methods, showcasing its potential for enhancing

grayscale chest X-ray images.

5.2 Ablation study
Table 3 shows the conducted ablation study is

to specific architectural modifications on the

performance of the proposed RECAN model. To

maintain consistency, all variants within the

considered network adhere to the same RECAN

configuration, with RG=4 and RECAB=4, and are

subject to identical implementation details and

experimental setups.

METHOD SCALE
X-Ray 2014 X-Ray 2017

SSIM MSIM SSIM MSIM

NN X4 0.701 0.713 0.637 0.668

Interpolation X4 0.687 0.681 0.615 0.644

ESPCN X4 0.795 0.815 0.756 0.804

FSRCNN X4 0.917 0.953 0.897 0.953

SRGAN X4 0.844 0.897 0.821 0.923

SNSRGAN X4 0.927 0.988 0.911 0.983

VDSR X4 0.823 0.920 0.821 0.923

RDN X4 0.927 0.976 0.931 0.982

RECAN(ours) X4 0.938 0.990 0.939 0.989

Table 2. Comparison of SSIM and MSIM results for different Super-Resolution Methods. Bold text is the best result, and
underlined text is near the best result
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5.2.1 Impact of Activation Function in RECAB

with Skip Connection

The initial focus of our investigation lies in

scrutinizing the role of skip connections within the

proposed model. Surprisingly, our observations

indicate that including skip connections when

utilizing RECAB in the ELU function fails to

yield optimal results. The second line of Table 3

depicts a substantial decline in performance (on

X-ray 2014: SSIM 0.830, MSIM 0.872; on X-ray

2017: SSIM 0.826, MSIM 0.881) compared to the

RG using concatenation.

However, when RECAB is configured with a

ReLU function, it performs superior to ELU.

Specifically, skip connections paired with RECABs

containing ReLU functions exhibit a notable

enhancement in performance. The third line of

Table 3 substantiates this improvement (on X-ray

2014: SSIM 0.861, MSIM 0.932; on X-ray 2017:

SSIM 0.901, MSIM 0.952). Consequently, for

RECABs connected with skip connections, ReLU

functions outperform ELU functions.

5.2.2 Comparative Analysis with Proposed

RECAN Model

To underscore the significance of these

architectural choices, we conducted a comparative

analysis with variations involving concatenation in

RG and ReLU functions in RECAB. Intriguingly,

this alternative configuration yielded superior

results, emphasizing the critical role of the selected

architecture. Table 3, line 4, represents the

utilization of concatenation in RG, with each

residual group (RG) containing RECAB configured

with ReLU functions.

However, this alternative configuration resulted

in inferior performance on both X-ray 2014 and

X-ray 2017 datasets (on X-ray 2014: SSIM 0.927,

MSIM 0.979; on X-ray 2017: SSIM 0.931, MSIM

0.978). Conversely, our proposed RECAN model,

showcased in Table 3, line 1, outperforms the

alternative configuration when using RECAB with

ReLU functions (X-ray 2014: SSIM 0.938, MSIM

0.990; on X-ray 2017: SSIM 0.939, MSIM 0.989).

5.2.3 Ablation Study Conclusion

The ablation study conducted in this

investigation provides critical insights into the

underlying factors influencing the performance of

our proposed RECAN model. By systematically

exploring specific architectural modifications and

maintaining consistency in the RECAN

configuration, we gained a nuanced understanding

of the model's behavior under varied conditions.

Notably, the ablation study revealed intriguing

patterns in the impact of skip connections and the

choice of activation functions within the network.

Our findings underscore that skip connections,

while commonly employed for feature propagation,

do not yield optimal results when used in

conjunction with RECABs configured with the

ELU activation function. Surprisingly, RECABs

incorporating ReLU functions in conjunction with

skip connections demonstrated superior

performance, highlighting the importance of

thoughtful activation function selection in the

presence of skip connections.

Moreover, the comparative analysis with

alternative configurations further substantiated the

critical role of the chosen architecture. The

unexpected outcome, where concatenation in RG

and ReLU functions in RECAB resulted in inferior

RECAN RG RECAB X-Ray 2014 X-Ray 2017

4RG
4RECAB

Concatenation Skip connection Elu ReLu CA ssim msim ssim msim

1 0.938 0.99 0.939 0.989

2 0.83 0.872 0.826 0.881

3 0.861 0.932 0.901 0.952

4 0.927 0.979 0.931 0.978

Table 3. Comparison of SSIM and MSIM results for different configurations of RECAN. Bold text indicates the best result,
and underlined text represents results that are near the best.
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performance, accentuates the unique strengths of

our proposed RECAN model. This analysis

emphasizes that the superior performance achieved

by our model is not merely a product of

individual components but rather a result of the

intricate interplay between architectural choices.

Ⅵ. Conclusion

This study comprehensively explored and

compared diverse super-resolution methods to

enhance grayscale chest X-ray images by

evaluating three distinct categories of

super-resolution techniques―Interpolation-based,

GAN-based, and deep learning-based―our analysis

focused on assessing their performance using the

Chest X-ray 2014 and Chest X-ray 2017 datasets.

As detailed in Table 2, the experimental

findings underscore the efficacy of various

super-resolution methods, gauged through

Single-Scale Structural Similarity Index (SSIM) and

Multi-Scale Structural Similarity Index (MSIM)

scores. Our proposed RECAN method emerged as

the top-performing approach, surpassing

benchmarks set by nearest neighbor (NN), bicubic

interpolation, SRGAN, SNSRGAN, and other deep

learning-based methodologies.

The unexpected outcomes revealed by the

ablation study further enhance the significance of

our findings, shedding light on the nuanced

interdependencies within the proposed RECAN

architecture. Overall, this investigation contributes

valuable insights into the promising capabilities of

deep learning-driven super-resolution techniques in

medical imaging. The robust performance of the

RECAN model signifies a significant advancement,

holding potential for improving diagnostic precision

and fostering advancements in medical research

and practice.

In conclusion, our investigation illuminates the

promising capabilities of deep learning-driven

super-resolution techniques in medical imaging.

The robust performance of the proposed RECAN

model signals a valuable stride forward, offering

enhanced image quality that is integral to

improving diagnostic precision and advancing the

broader landscape of medical research and practice.
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